AK002, a Novel Humanized Monoclonal Antibody to Siglec-8, Inhibits Mast Cell Activity and Depletes Eosinophils in Ex Vivo Bone Marrow Tissue from Patients with Systemic Mastocytosis

Bradford A Youngblood, Rustom Falahati, Emily C Brock, John Leung, Christopher Bebbington, Nenad Tomasevic
Allakos Inc. San Carlos, CA

BACKGROUND

- Systemic Mastocytosis (SM) is a rare disease characterized by the clonal proliferation and accumulation of mast cells in the bone marrow, respiratory and gastrointestinal tracts, and organs such as the skin, liver, spleen, and brain.
- Common symptoms include pruritus, flushing, headache, cognitive impairment, fatigue, diarrhea, abdominal pain, hypotension and skin lesions, as well as an increased risk for osteoporosis and anaphylaxis.
- SM is currently managed with antihistamines, cromolyn sodium, and leukotriene blocking agents, which lack efficacy in many patients.
- In addition, glucocorticoids can provide temporary relief in some cases, however long-term treatment with steroids is not appropriate due to their many side effects.

METHODS

- **Patient numbers**: 12 healthy subjects and 7 SM patients
- **Bone marrow aspirates and blood**: Obtained from patients
- **AK002 Single dose**: SD from 1 SM patient
- **AK002 Antibody**: Reduced the expression of SM markers, CD25 and CD69 on bone marrow mast cells from SM patients
- **CD25 and CD69 expression**: Significantly elevated on bone marrow mast cells from SM patients consistent with previous experiments
- **Bone marrow aspirates and blood**: Obtained from patients
- **AK002 significantly reduced ex vivo bone marrow eosinophils, but not mast cells, from SM patients consistent with previous experiments

RESULTS

- **Siglec-8 is highly expressed on mature bone marrow eosinophils from SM patients**
- **AK002 significantly reduced ex vivo bone marrow eosinophils, but not mast cells, from SM patients consistent with previous experiments

CONCLUSIONS/DISCUSSION

- **Siglec-8 was robustly expressed on diseased mast cell surface markers and decreased mast cell mediators in SM patient bone marrow, suggestive of broad mast cell inhibition**
- **AK002 reduced the expression of cytokines and chemokines in bone marrow that were also elevated in serum of SM patients compared to healthy subjects**
- **Multiple cytokines, including IL-2, 5, 6, 8, 9, 13, 15, 16 and TNFα were significantly elevated in serum of SM patients compared to healthy subjects**

ACKNOWLEDGMENTS

- Allakos Inc., Stanford Hospital and Clinics, and Stanford University Medical Center for providing patient samples that enabled this study.

Figure 1. AK002 Mechanism of Action

Figure 2. AK002 Mechanism of Action

Figure 3. SM Patient Bone Marrow Mast Cells Express Siglec-8 and Display a Diseased Phenotype

Figure 4. AK002 Significantly Reduced Eosinophils in ex vivo SM Patient Bone Marrow

Figure 5. AK002 Reduced the Expression of CD25 and CD69 on ex vivo Bone Marrow Mast Cells from SM Patients

Figure 6. AK002 Reduced the Level of Mast Cell-Associated Mediators Produced in Supernatant of Cultured Bone Marrow Cells

Figure 7. SM Patients Display Elevated Levels of Serum Cytokines and Chemokines Compared to Healthy Subjects