A Siglec-8 Antibody Reduces Substance P-induced Inflammation by Inhibiting MRGPR-mediated Mast Cell Activation

Simon Gebremeskel, Alan Wong, Tina Davis, Emily C. Brock, John Leung, Julia Schanin, Bradford A. Youngblood

Allakos, Inc., Redwood City, CA

EAACI 2020 London, UK June 6th-8th 2020

Disclosures

- Authors are employees of Allakos, Inc.
- AK002 is an investigational drug in clinical development as is not FDA or EMA approved

Mast Cells Are Key Drivers of Inflammatory Disease

Substance P Drives Neurogenic Inflammation and Pain through Mast Cell Activation

une 6th-8th

- Substance P is a neuropeptide that activates mast cells through the MrgprX2/B2 receptor, leading to cytokine release, pain, itch, and recruitment of immune cells^{1,2}
- Multiple diseases have been shown to be associated with Substance P-mediated mast cell activation, including chronic urticaria, psoriasis, and atopic dermatitis^{2,3}
- Elevated Substance P levels as well as increased mast cell numbers and activation have also been reported in the mucosa of patients with gastrointestinal disorders⁴
- Based on numerous studies implicating Substance P/MrgprX2-mediated mast cell activation in the pathogenesis of multiple diseases there is a significant need to identify potential therapies that can modulate this pathway

AK002 Broadly Inhibits Mast Cells and Depletes Eosinophils

Substance P Selectively Activates Human and Mouse Mast Cells through MrgprX2/B2

MrgprX2/B2 is selectively expressed on mast cells and stimulation with Substance P induces degranulation of human and mouse mast cells

Mouse Model to Examine the Role of Mast Cells in Substance P-Induced Inflammation

 Substance P and other MrgprB2 agonists have been shown to recruit neutrophils into local tissues, including the mouse footpad and peritoneal cavity^{1,2}

7

Mast Cells Play an Important Role in Substance P-Mediated Neutrophil Recruitment

Substance P induces mast cell-dependent recruitment of neutrophils into the peritoneal cavity

Anti-Siglec-8 mAb Reduces Sub P-Mediated Neutrophil Infiltration

Anti-Siglec-8 mAb treatment significantly reduces Substance P-mediated neutrophil recruitment into the peritoneal cavity

Anti-Siglec-8 mAb Inhibits Substance P-Mediated Inflammation and Mast Cell Activation

Anti-Siglec-8 mAb decreases Substance P-induced chemokine production and mast cell activation, indicative of direct mast cell inhibition

Conclusions

- Studies using mast cell deficient mice show reduced Substance P-mediated inflammation, implicating mast cells as key effector cells in Substance Pmediated inflammation
- Treatment with an anti-Siglec-8 mAb significantly inhibits Substance Pmediated mast cell degranulation, chemokine production, and neutrophil infiltration
- Targeting mast cells with an anti-Siglec-8 mAb may have the potential to treat diseases associated with Substance P/MrgprX2-mediated mast cell activation, such as irritable bowel syndrome, functional dyspepsia, atopic dermatitis, and chronic urticaria

