Lirentelimab (AK002), an Anti-Siglec-8 Antibody, Suppresses Acute IL-33-induced Neutrophil Infiltration and Attenuates Tissue Damage in a Chronic Experimental COPD Model Through Mast Cell Inhibition
Julia Schanin1, Wouter Korver1, Melina Butuci1, Philip M. Hansbro2, Emily C. Brock1, Erik Evensen2, John Leung1, and Bradford A. Youngblood1

1Alicos Inc, Redwood City, CA; 2The University of Newcastle, Newcastle, New South Wales, Australia; 3Basis Bioscience, LLC, Foster City, CA

- IL-33 stimulation of mast cells is believed to play a role in driving allergic and non-allergic inflammation in many diseases including asthma, chronic obstructive pulmonary disease (COPD), atopic dermatitis (AD), and inflammatory bowel disease (IBD) (Figure 1)
- Siglec-8 monomeric antibodies (mAbs) previously have been shown to inhibit mast cell activation and selectively deplete eosinophils in atopic diseases
- However, the effect of an anti-Siglec-8 antibody has not been evaluated in non-allergic models of inflammation

METHODS

BACKGROUND
Lirentelimab (AK002), an Anti-Siglec-8 Antibody, Suppresses Acute IL-33-induced Neutrophil Infiltration and Attenuates Tissue Damage in a Chronic Experimental COPD Model Through Mast Cell Inhibition

RESULTS

- IL-33 directly activates mast cells and lirentelimab treatment substantially modulates the mast cell transcriptome
 - These data suggest that lirentelimab reduces IL-33-driven non-allergic inflammation by inhibiting mast cells

CONCLUSIONS

- These data support the clinical evaluation of anti-Siglec-8 mAbs, such as lirentelimab, as a therapeutic approach in both allergic and non-allergic diseases, such as IBD, COPD, and AD

REFERENCES

ACKNOWLEDGMENTS

- In addition to the demonstrated anti-inflammatory activity in allergic diseases, lirentelimab, an anti-Siglec-8 mAb, also reduces non-allergic inflammation by inhibiting non-IgE-mediated mast cell activation
- These data support the clinical evaluation of anti-Siglec-8 mAbs, such as lirentelimab, as a therapeutic approach in both allergic and non-allergic diseases, such as IBD, COPD, and AD

FIGURE 1: Mouse Model of IL-33-Induced Neutrophil Infiltration

- Acute MC-dependent neutrophil recruitment was induced in Siglec-8-Transgenic (TG) mice by intraperitoneal injection of IL-33 (Figure 3)
- Peripheral lavage was collected and analyzed 3 hours later
- Experimental COPD was induced by exposing TG mice to chronic cigarette smoke (CS) for 12 weeks followed by analysis of lung function and injury. Mice were dosed therapeutically on week 8 with lirentelimab or isotype control mAb

- Figure 4: Lirentelimab Reduces IL-33-driven Non-allergic Inflammation
 - IL-33 directly activates mast cells and lirentelimab treatment substantially modulates the mast cell transcriptome
 - These data suggest that lirentelimab reduces IL-33-driven non-allergic inflammation by inhibiting mast cells