Antolimab (AK002), an Anti-Siglec-8 Antibody, Suppresses Acute IL-33-induced Neutrophil Infiltration and Attenuates Tissue Damage in a Chronic Experimental COPD Model Through Mast Cell Inhibition

Julie Schanlin1, Wouter Korver1, Melina Butulci1, Philip M. Hансbro2, Emily C. Brock1, Erik Evensen1, John Leung1, and Bradford A. Youngblood1

1Allakos Inc. Redwood City, CA; 2The University of Newcastle, Newcastle, New South Wales, Australia; 3Basis Bioscience, LLC, Foster City, CA

Background

- IL-33 stimulation of mast cells is believed to play a role in driving acute and chronic inflammation in many diseases including, asthma, chronic obstructive pulmonary disease (COPD), atopic dermatitis (AD), and inflammatory bowel disease (IBD) (Figure 1)
- Siglec-8 monoclonal antibodies (mAb) have been previously been shown to inhibit mast cell activation and selectively deplete eosinophils
- However, the effect of an anti-Siglec-8 antibody has not been evaluated in non-allergic models of inflammation

Figure 1. Mast Cells and Eosinophils are Key Drivers of Acute and Chronic Inflammation

Methods

- Acute neutrophil recruitment was induced in Siglec-8-Transgenic (TG) mice by intraperitoneal injection of IL-33 (Figure 3)
- Peritoneal lavage was collected and analyzed 3 hours later
- Experimental COPD was induced by exposing TG mice to cigarette smoke (CS) for 12 weeks followed by analysis of lung function and inflammation. Mice were dosed therapeutically on week 8 with antolimab or isotype control mAb

Figure 2. Antolimab (AK002) Mechanism of Action

Results

- IL-33 directly activates mast cells and antolimab treatment substantially modulates the mast cell transcriptome
- These data demonstrate that antolimab directly inhibits non-IgE mediated mast cell activation in vivo

Figure 3. Mouse Model of IL-33-Induced Neutrophil Infiltration

Conclusions

- Antolimab reduces acute IL-33-dependent non-IgE allergic inflammation by inhibiting non-IgE-mediated mast cell activation
- Consistent with IL-33-mediated mast cell inhibition, antolimab downregulated genes associated with TNFα, mTNF, and PI3K signaling
- Antolimab also suppressed chronic non-allergic inflammation, suggesting anti-Siglec-8 mAbs can be effective in both allergic and non-allergic disease settings

Figure 4: Antolimab Reduces IL-33-driven Inflammation

Figure 5: Antolimab Globally Inhibits IL-33 Activated Mast Cells

Figure 6: Antolimab Inhibits Downstream Signaling Pathways of IL-33 Activation

Figure 7: Antolimab Reduces Chronic Inflammation and Improves Lung Function in Cigarette-Smoke-Induced Experimental COPD

Presented at the American Academy of Allergy, Asthma & Immunology (AAAAI), Philadelphia, PA, March 13th – 16th, 2020